Genetic Problems – CO-DOMINANCE & INCOMPLETE DOMINANCE

Constant Con

For each of the following problems:

- a. make a key
- b. write out the cross
- c. make a Punnett square
- d. answer the associated questions

YOU MUST DO THIS FOR EVERY CROSS IN EACH QUESTION!

 Sickle cell anemia is a co-dominant disorder, where A stands for normal red blood cells and S stands for sickle- shaped red blood cells. SS results in death. Heterozygous individuals have a phenotype showing both sickle-celled and normal-shaped red blood cells. Cross two people who are heterozygous for this trait. 	Parents: X Key: AA= Normal Red blood cells SS= All Sickle (results in stillbirth) AS= Sickle Cell Anemia
are likely to have sickle cell anemia?	
b. What is the % chance their offspring are likely to have normal red blood cells?	
2. Co-dominance is observed in tabby cats. A cross between a black cat and a tan cat produces a tabby pattern (black and tan fur together).	Parents:X Key: BB= Black TT= Tan BT= Tabby
a. Cross a black cat with a tabby cat. Give the phenotypic ratio: and genotype ratio: of the offspring.	
 b. Is it possible to get a black cat if the parent generation is a tan cat crossed with a tabby cat? Prove it in the Punnett square 	
c. Cross two tabby cats. Give the phenotypic ratio: and genotype ratio: of the offspring.	Parents:X

3.	In some cattle, the allele for Brown hair (B) and the allele for white hair (W) are incomplete-dominance. The heterozygous condition results in red cattle, called roan.	Key: BB=Brown WW=White BW= Red (Roan)
	a. Cross a red cow with a white bull. What percent of the offspring will be red? What percent of the offspring will be heterozygous?	
	 b. Cross a red bull with a red cow. Give the phenotypic ratio: and genotype ratio: of the offspring. 	
	c. Cross a red cow with a brown bull. Can they have a white offspring? What percent of their offspring are brown? red?	
	 Cross a brown cow with a white bull. What is the genotype of all the offspring? and phenotype of all the offspring? 	
	 In Labradors, the allele for Black hair (B) and the allele for yellow hair (Y) show incomplete- dominance. The heterozygous condition (BY) results in a brown Labrador. Use a Punnett square to prove your answers. 	Key: BB= Black YY= Yellow BY=Brown
	 a. If an entire litter of puppies is brown and the mother is yellow, what color was the father likely to be? 	
	 b. If 50% of the puppies were brown and 25% were yellow, what was the likely genotype of each parent?X 	
	 c. What must the parents be to have an entire litter of black puppies?X Yellow puppies?X 	