For each of the following problems:
a. make a key
b. write out the cross
c. make a Punnett square
d. answer the associated questions

YOU MUST DO THIS FOR EVERY CROSS IN EACH QUESTION!

1. Sickle cell anemia is a co-dominant disorder, where A stands for normal red blood cells and S stands for sickleshaped red blood cells. SS results in death. Heterozygous individuals have a phenotype showing both sickle-celled and normal-shaped red blood cells. Cross two people who are heterozygous for this trait.
a. What is the \% chance their offspring are likely to have sickle cell anemia?
b. What is the \% chance their offspring are likely to have normal red blood cells? \qquad

Parents: \qquad X \qquad
Key: AA= Normal Red blood cells
SS= All Sickle (results in stillbirth) AS= Sickle Cell Anemia

2. Co-dominance is observed in tabby cats. A cross between a black cat and a tan cat produces a tabby pattern (black and tan fur together).
a. Cross a black cat with a tabby cat. Give the phenotypic ratio: \qquad and genotype ratio: \qquad of the offspring.
b. Is it possible to get a black cat if the parent generation is a tan cat crossed with a tabby cat? the Punnett square.
\qquad Prove it in
\qquad Parents \qquad X \qquad $\square-$

Key: BB=Black
TT=Tan
BT= Tabby
c. Cross two tabby cats.

Parents: \qquad X \qquad
 Give the phenotypic ratio: \qquad and genotype ratio: \qquad of the offspring.

3. In some cattle, the allele for Brown hair (B) and the allele for white hair (W) are incomplete-dominance. The heterozygous condition results in red cattle, called roan.
a. Cross a red cow with a white bull. What percent of the offspring will be red? \qquad What percent of the offspring will be heterozygous? \qquad
b. Cross a red bull with a red cow. Give the phenotypic ratio: \qquad and genotype ratio: \qquad of the offspring.
c. Cross a red cow with a brown bull. Can they have a white offspring? \qquad What percent of their offspring are brown? \qquad red? \qquad
d. Cross a brown cow with a white bull. What is the genotype of all the offspring? \qquad and phenotype of all the offspring?
\qquad
4. In Labradors, the allele for Black hair (B) and the allele for yellow hair (Y) show incompletedominance. The heterozygous condition (BY) results in a brown Labrador. Use a Punnett square to prove your answers.
a. If an entire litter of puppies is brown and the mother is yellow, what color was the father likely to be? \qquad
b. If 50% of the puppies were brown and 25\% were yellow, what was the likely genotype of each parent? \qquad X \qquad
c. What must the parents be to have an entire litter of black puppies? \qquad X Yellow puppies? \qquad X \qquad

Key: BB=Brown
WW=White
$\mathrm{BW}=\operatorname{Red}($ Roan $)$

Key: BB=Black
YY= Yellow
BY=Brown

