Scientific Process Notes

What	is the scientific process?
•	It's a logical, problem solving technique is an excellent example of scientific process.
1.	 Observation vs Inference Observation is important in the scientific process
	An is a or fact. There is <i>NO OPINION</i> involved.
	An is an, or conclusion, based on observed facts.
2.	 Problem Statement Careful observations lead to questions.
	A problem statement is a question that compares
	 Example: Does the drop height affect the bounce height of a superball?
	Example: How does the percent of dissolved oxygen in water affect the life span of algae?
3.	Variables • A is something that during your
	experimental procedure.
	 There are independent variables and dependent variables.
4.	Independent Variable An variable is a variable that we manipulate
	An independent variable is the variable whose valuean experiment.
	<i>Example</i> : Does the drop height affect the <i>bounce height</i> of a superball?
	We know the drop heights we will use.
	<i>Example</i> : How does the percent of dissolved oxygen in water affect the life span of algae?
	We know the different percentages of oxygen we will use.
5.	Dependent Variable A
	(depends on the independent variable).
	The dependent variable is the variable whose value – it's the of the experiment.
	Example: Does the drop height affect the bounce height of a superball?
	We do not know the bounce heights before we start.

Example: How does the percent of dissolved oxygen in water affect the life span of algae?

We **do not know** how long the algae will live.

6. What is a Constant?

A ______ for the duration of an experiment; a value that remains the same.

experiment; a value that remains the same.

Example: Does the drop height affect the bounce height of a superball?

The **superball** does not change during the experiment.

Example: How does the percent of dissolved oxygen in water affect the life span of **algae**?

The amount and type of algae used does not change during the experiment.

Other constants in the experiment:

- *_____ of water
- *_____ of water
- *_____ of aquarium

*time of day measurement taken

7. Hypothesis vs Theory

- A ______ is a suggested explanation based on research and knowledge.
- A ______ is a tested, well-substantiated, unifying explanation for a set of verified, proven factors. It has NEVER been disproven. Theories hold more weight than facts in science.

Why do we use graphs?

- Graphs help us ______ numerical data.
- There are several different types of graphs:
- Bar graph Bar graphs are used to show a ______ of multiple objects.
- Pie graph Pie graphs are used to compare the ______ of a ______.
- Line graph Line graphs are used to show the ______ between